1. 田海莹. 花生油脂合成途径相关lncRNAs及关键基因的功能研究[D]. 济南: 山东大学, 2022.
2. White J A, Todd J, Newman T, et al. A new set of Arabidopsis expressed sequence tags from developing seeds. the metabolic pathway from carbohydrates to seed oil[J]. Plant Physiology, 2000, 124(4): 1582-1594.
3. Baud S, Lepiniec L. Physiological and developmental regulation of seed oil production[J]. Progress in Lipid Research, 2010, 49(3): 235-249.
4. 王昊一, 李宇玲, 朱乐, 等. 油菜种子休眠性对脂肪酸积累的影响及其分子机制[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 397-403.
5. 王昊一. 油菜种子脂肪酸消减基因的功能解析及含油量相关基因发掘[D]. 杭州: 浙江大学, 2021.
6. Shilman F, Brand Y, Brand A, et al. Identification and molecular characterization of homeologous Δ9‑stearoyl acyl carrier protein desaturase 3 genes from the allotetraploid peanut (Arachis hypogaea)[J]. Plant Molecular Biology Reporter, 2011, 29(1): 232-241.
7. Liu H, Li H, Gu J, et al. Identification of the candidate proteins related to oleic acid accumulation during peanut (Arachis hypogaea L.) seed development through comparative proteome analysis[J]. Int J Mol Sci, 2018, 19(4): E1235.
8. 刘浩, 鲁清, 李海芬, 等. 花生硬脂酰‑ACP酸脱饱和基因FAB2表达的分子机制[J]. 作物学报, 2019, 45(11): 1638-1648.
9. 徐平丽, 唐桂英, 毕玉平, 等. 花生AhFAD2基因抑制表达的转基因后代分析[J]. 生物工程学报, 2018, 34(9): 1469-1477.
10. 邓咪咪, 刘宝玲, 王志龙, 等. 大豆硬脂酰‑ACPΔ9脱氢酶(GmSAD)基因家族的鉴定及功能分析[J]. 生物工程学报, 2020, 36(4): 716-731.
11. 贾艳丽, 吴磊, 卢长明. 甘蓝型油菜Δ9硬脂酰ACP脱氢酶(SAD)基因的克隆与表达分析[J]. 中国油料作物学报, 2014, 36(2): 135-141.
12. Craig W, Lenzi P, Scotti N, et al. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance[J]. Transgenic Research, 2008, 17(5): 769-782.
13. 蔡曼. 棉花GhSAD2基因的克隆与功能验证[D]. 石河子:石河子大学, 2017.
14. 周瑢, 刘盼, 黎冬华, 等. 芝麻硬脂酸脱饱和酶基因SiSAD的克隆及功能验证[J]. 中国农业科学, 2019, 52(10): 1678-1685.
15. 马建忠,傅幼英,刘丹. 菠菜硬脂酰基载体蛋白去饱和酶(SAD)基因的分子克隆[J]. 农业生物技术学报,1996(1): 33-37.
16. 范妙华. 千年桐硬脂酸脱饱和酶、油酸脱氢酶基因克隆及真菌遗传转化研究[D]. 北京: 中国林业科学研究院, 2008.
17. Kachroo A, Shanklin J, Whittle E, et al. The Arabidopsis stearoyl‑acyl carrier protein‑desaturase family and the contribution of leaf isoforms to oleic acid synthesis[J]. Plant Molecular Biology, 2007, 63(2): 257-271.
18. Gao L C, Sun R H, Liang Y X, et al. Cloning and functional expression of a cDNA encoding stearoyl‑ACP Δ9‑desaturase from the endosperm of coconut (Cocos nucifera L.)[J]. Gene, 2014, 549(1): 70-76.
19. 李元杰,刘璐,周如军,等.花生疮痂病菌ISSR‑PCR反应体系的建立和优化[J].吉林农业大学学报,2019,41(2):142-148.
20. Rajwade A V, Kadoo N Y, Borikar S P, et al. Differential transcriptional activity of SAD FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in α‑linolenic acid content[J]. Phytochemistry, 2014, 98: 41-53.
21. Ramesh A M, Kesari V, Rangan L. Characterization of a stearoyl‑acyl carrier protein desaturase gene from potential biofuel plant, Pongamia pinnata L.[J]. Gene, 2014, 542(2): 113-121.
22. Shah F H, Rashid O, San C T. Temporal regulation of two isoforms of cDNA clones encoding delta 9‑stearoyl‑ACP desaturase from oil palm (Elaies guineensis)[J]. Plant Science, 2000, 152(1): 27-33.
23. Slocombe S P, Cummins I, Jarvis R P, et al. Nucleotide sequence and temporal regulation of a seed‑specific Brassica napus cDNA encoding a stearoyl‑acyl carrier protein (ACP) desaturase[J]. Plant Mol Biol, 1992, 20(1): 151-155.
24. Thambugala D, Cloutier S. Fatty acid composition and desaturase gene expression in flax (Linum usitatissimum L.)[J]. Journal of Applied Genetics, 2014, 55(4): 423-432.
25. Zaborowska Z, Starzycki M, Femiak I, et al. Yellow lupine gene encoding stearoyl‑ACP desaturase: Organization, expression and potential application[J]. Acta Biochim Pol, 2002, 49(1): 29-42.
26. Zhao N, Zhang Y, Li Q Q, et al. Identification and expression of a stearoyl‑ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds[J]. Plant Physiology and Biochemistry, 2015, 87: 9-16.
27. Liu Q, Singh S P, Green A G. High‑stearic and high‑oleic cottonseed oils produced by hairpin RNA‑mediated post-transcriptional gene silencing[J]. Plant Physiology, 2002, 129(4): 1732-1743.
28. Kachroo A, Lapchyk L, Fukushige H, et al. Plastidial fatty acid signaling modulates salicylic acid‑ and jasmonic acid‑mediated defense pathways in the Arabidopsis ssi2 mutant[J]. Plant Cell. 2003, 15(12): 2952-2965.
29. Joern K, Hanna F, Stefanie S, et al. Two fatty acid desaturases, stearoyl‑acyl carrier protein δ9‑desaturase6 and fatty acid desaturase3, are involved in drought and hypoxia stress signaling in Arabidopsis crown galls[J]. Plant Physiology, 2014, 164(2): 570-583.
30. 刘蕾, 杜海, 唐晓凤, 等. MYB 转录因子在植物抗逆胁迫中的作用及其分子机理[J]. 遗传, 2008, 30(10): 1265-1271.
31. Wasternack C, Song S S. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription[J]. Journal of Experimental Botany, 2017, 68(6): 1303-1321.