1. 肖景华, 吴昌银, 袁猛, 等. 中国水稻功能基因组研究进展与展望[J]. 科学通报, 2015, 60(18): 1711-1722.
2. 朱建峰, 崔振荣, 吴春红, 等. 我国盐碱地绿化研究进展与展望[J]. 世界林业研究, 2018, 31(4): 70-75.
3. Hasegawa P M. Sodium (Na+) homeostasis and salt tolerance of plants[J]. Environmental and Experimental Botany, 2013, 92: 19-31.
4. Neverisky D L, Abbott G W. Ion channel‑transporter interactions[J]. Critical Reviews in Biochemistry and Molecular Biology, 2015, 51(4): 257-267.
5. Fukuda A, Nakamura A, Hara N, et al. Molecular and functional analyses of rice NHX‑type Na+/H+ antiporter genes[J]. Planta, 2011, 233(1): 175-188.
6. Hasanuzzaman M, Bhuyan M H M B, Nahar K, et al. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses[J]. Agronomy, 2018, 8(3): 31.
7. Falhof J, Pedersen J T, Fuglsang A T, et al. Plasma membrane H(+)-ATPase regulation in the center of plant physiology[J]. Molecular Plant, 2016, 9(3): 323-337.
8. Baillo E H, Kimotho R N, Zhang Z B, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J]. Genes, 2019, 10(10): 771.
9. Dubey A, Ahmad Malla M, Kumar A, et al. Plants endophytes: Unveiling hidden agenda for bioprospecting toward sustainable agriculture[J]. Critical Reviews in Biotechnology, 2020, 40(8): 1210-1231.
10. Shen J B, Lü B, Luo L Q, et al. The NAC‑type transcription factor OsNAC2 regulates ABA‑dependent genes and abiotic stress tolerance in rice[J]. Scientific Reports, 2017, 7: 40641.
11. Zhang S X, Haider I, Kohlen W, et al. Function of the HD‑Zip I gene Oshox22 in ABA‑mediated drought and salt tolerances in rice[J]. Plant Molecular Biology, 2012, 80(6): 571-585.
12. Hu H H, Dai M Q, Yao J L, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. PNAS, 2006, 103(35): 12987-12992.
13. Qiu Y P, Yu D Q. Over‑expression of the stress‑induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis[J]. Environmental and Experimental Botany, 2009, 65(1): 35-47.
14. Jisha V, Dampanaboina L, Vadassery J, et al. Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice[J]. PLoS One, 2015, 10(6): e0127831.
15. Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53: 247-273.
16. 冷春旭, 郑福余, 赵北平, 等. 水稻耐碱性研究进展[J]. 生物技术通报, 2020(11): 103-111.
17. Yang C W, Xu H H, Wang L L, et al. Comparative effects of salt‑stress and alkali‑stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants[J]. Photosynthetica, 2009, 47(1): 79-86.
18. Guo R, Yang Z Z, Li F, et al. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress[J]. BMC Plant Biology, 2015, 15: 170.
19. 扈艳萍. 不同穗型粳稻幼苗对盐碱胁迫的生理响应[J]. 沈阳农业大学学报, 2019, 50(4): 463-469.
20. 路旭平, 李芳兰, 马晓娟, 等. 不同碱敏感水稻品种根系对碱胁迫的生理响应策略[J]. 中国生态农业学报(中英文), 2021, 29(7): 1171-1184.
21. 杨福. 超高产耐盐碱优质水稻新品种东稻4的选育及应用[J]. 科技促进发展, 2015(6): 780-783.
22. Li Q, Yang A, Zhang W H. Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress[J]. BMC Plant Biology, 2017, 17(1): 141.
23. Li Q, Ma C K, Tai H H, et al. Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline‑alkaline stress[J]. PLoS One, 2020, 15(12): e0243112.
24. Lü B S, Li X W, Ma H Y, et al. Differences in growth and physiology of rice in response to different saline‑alkaline stress factors[J]. Agronomy Journal, 2013, 105(4): 1119-1128.
25. 吴楠, 唐玙璠, 林宇杰, 等. 水稻‘一目惚’抵御盐碱胁迫部分相关基因表达[J]. 分子植物育种, 2019, 17(23): 7634-7640.
26. Chang W, Niu Y, Yu M N, et al. qPrimerDB: A powerful and user‑friendly database for qPCR primer design[J]. Methods in Molecular Biology, 2022, 2392: 173-182.
27. Wang X F, He F F, Ma X X, et al. OsCAND1 is required for crown root emergence in rice[J]. Molecular Plant, 2011, 4(2): 289-299.
28. Zhu J S, Li Y, Lin J, et al. CRD1, an Xpo1 domain protein, regulates miRNA accumulation and crown root development in rice[J]. The Plant Journal, 2019, 100(2): 328-342.
29. Kitomi Y, Ogawa A, Kitano H, et al. CRL4 regulates crown root formation through auxin transport in rice[J]. Plant Root, 2008, 2: 19-28.
30. Zhang Y M, Yan Y S, Wang L N, et al. A novel rice gene, NRR responds to macronutrient deficiency and regulates root growth[J]. Molecular Plant, 2012, 5(1): 63-72.
31. Qin C, Li Y Y, Gan J, et al. OsDGL1, a homolog of an oligosaccharyltransferase complex subunit, is involved in N‑glycosylation and root development in rice[J]. Plant & Cell Physiology, 2013, 54(1): 129-137.
32. Li C X, Shen H Y, Wang T, et al. ABA regulates subcellular redistribution of OsABI‑LIKE2, a negative regulator in ABA signaling, to control root architecture and drought resistance in Oryza sativa[J]. Plant & Cell Physiology, 2015, 56(12): 2396-2408.
33. Liu W, Xu Z H, Luo D, et al. Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity[J]. The Plant Journal, 2003, 36(2): 189-202.
34. Yuan J, Chen D, Ren Y J, et al. Characteristic and expression analysis of a metallothionein gene, OsMT2b, down‑regulated by cytokinin suggests functions in root development and seed embryo germination of rice[J]. Plant Physiology, 2008, 146(4): 1637-1650.
35. Isayenkov S, Isner J C, Maathuis F J M. Rice two‑pore K+ channels are expressed in different types of vacuoles[J]. The Plant Cell, 2011, 23(2): 756-768.
36. Wang R, Jing W, Xiao L Y, et al. The rice high‑affinity potassium Transporter1;1 is involved in salt tolerance and regulated by an MYB‑type transcription factor[J]. Plant Physiology, 2015, 168(3): 1076-1090.
37. Garciadeblás B, Senn M E, Bañuelos M A, et al. Sodium transport and HKT transporters: The rice model[J]. The Plant Journal, 2003, 34(6): 788-801.
38. Hwang H, Yoon J, Kim H Y, et al. Unique features of two potassium channels, OsKAT2 and OsKAT3, expressed in rice guard cells[J]. PLoS One, 2013, 8(8): e72541.
39. Martínez‑Atienza J, Jiang X Y, Garciadeblas B, et al. Conservation of the salt overly sensitive pathway in rice[J]. Plant Physiology, 2007, 143(2): 1001-1012.
40. Chen Z C, Yamaji N, Fujii‑Kashino M, et al. A cation‑chloride cotransporter gene is required for cell elongation and osmoregulation in rice[J]. Plant Physiology, 2016, 171(1): 494-507.
41. Liu D F, Chen X J, Liu J Q, et al. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance[J]. Journal of Experimental Botany, 2012, 63(10): 3899-3911.
42. Yokotani N, Ichikawa T, Kondou Y, et al. Role of the rice transcription factor JAmyb in abiotic stress response[J]. Journal of Plant Research, 2013, 126(1): 131-139.
43. Chen X, Wang Y F, Lü B, et al. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway[J]. Plant & Cell Physiology, 2014, 55(3): 604-619.
44. Song S Y, Chen Y, Chen J, et al. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress[J]. Planta, 2011, 234(2): 331-345.
45. Xiang Y, Tang N, Du H, et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiology, 2008, 148(4): 1938-1952.
46. Mukherjee K, Choudhury A R, Gupta B, et al. An ABRE‑binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice[J]. BMC Plant Biology, 2006, 6: 18.
47. 安玉艳, 梁宗锁. 植物应对干旱胁迫的阶段性策略[J]. 应用生态学报, 2012, 23(10): 2907-2915.
48. 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5): 868-882.
49. Tao Z, Kou Y J, Liu H B, et al. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. Journal of Experimental Botany, 2011, 62(14): 4863-4874.