图1 智能灯诱害虫监测设备
Fig. 1 Intelligent light-trapping pest monitoring equipment
图2 飞虱类害虫图像
Fig. 2 Image of planthopper pests
图3 灯诱稻飞虱害虫数据样例
Fig. 3 Sample data of light-trapping rice planthopper detection
图4 dataset_Planthopper标注框尺寸分布直方图
Fig. 4 The histogram of the size distribution of the dataset_Planthopper lable box
图5 改进的YOLOv11x模型结构
Fig. 5 Improved YOLOv11x model architecture
图6 EMA机制结构图
Fig. 6 EMA mechanism structural diagram
图7 C3k2-EMA模块结构图
Fig .7 The structure of the C3k2-EMA module
图8 SPD-Conv模块结构图
Fig. 8 The structure of the SPD-Conv module
图9 调整检测层后的模型特征融合结构图
Fig. 9 Feature fusion structure after adjusting the detection layer
图10 WIoUv3锚框与目标框的位置区域图
Fig. 10 The location area diagram of the anchor frame and target frame of WIoUv3
图11 灯诱稻飞虱害虫检测研究不同注意力机制对比热力图
Fig. 11 Specific heat maps of different attention mechanisms for the light-trapping rice planthopper detection research
图12 灯诱稻飞虱害虫检测研究CIoU vs WIoUv3的实际定位效果图
Fig. 12 The actual positioning effect drawing of CIoU vs WIoUv3 for the light-trapping rice planthopper detection research
图13 灯诱稻飞虱害虫研究检测模型改进前后检测效果对比图
Fig. 13 Comparison of detection results before and after model improved for the light-trapping rice planthopper detection research